Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/abstract-152-161/

FEBRUARY 2024

Examining the Impact of Immunosuppressive Agents on Natural Killer Cell Functionality in Liver Transplant Recipients: A Comprehensive Analysis of Therapeutic Drug Exposure

¹Dr M Asif Naveed, ²Kashif Lodhi, ³Ali Raza, ⁴Mohib Ali

¹Hepatobiliary and liver transplant unit Shaikh Zayed hospital

ABSTRACT:

Abstract:

Background: Liver transplantation often necessitates the use of immunosuppressive drugs to prevent rejection. However, the impact of these drugs on the immune system, particularly on natural killer (NK) cells, remains a subject of investigation.

Aim: This study aimed to investigate the influence of immunosuppressive drugs on NK cells during therapeutic drug exposure in liver transplantation.

Methods: A prospective study was conducted from November 2022 and November 2023, involving 90 patients undergoing liver transplantation. Peripheral blood samples were collected at regular intervals post-transplantation to assess NK cell populations using flow cytometry. Immunosuppressive drug levels were monitored concurrently.

Results: Our results revealed significant alterations in NK cell populations following exposure to immunosuppressive drugs. Specifically, a decrease in the absolute count and functional activity of NK cells was observed with increasing concentrations of immunosuppressants.

Conclusion: Immunomodulatory effects of immunosuppressive drugs on NK cells were evident in liver transplant recipients. Understanding these dynamics is crucial for optimizing immunosuppressive regimens and minimizing the risk of complications post-transplantation.

Keywords: Liver transplantation, Immunosuppressive drugs, Natural killer cells, Therapeutic drug exposure, Flow cytometry.

INTRODUCTION:

FEBRUARY 2024

Liver transplantation stands as a beacon of hope for individuals suffering from end-stage liver diseases, offering them a chance at renewed life and vitality. However, the success of such transformative procedures is contingent upon the delicate balance between graft acceptance and rejection, mediated by the intricate interplay of various components of the immune system [1]. Among these, natural killer (NK)

²Department of Agricultural, Food and Environmental Sciences. Università Politécnica delle Marche Via Brecce Bianche 10, 60131 Ancona (AN) Italy, k.lodhi@studenti.unibg.it

³PIMS, Islamabad

⁴PIMS, Islamabad

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/abstract-152-161/

FEBRUARY 2024

cells emerge as formidable guardians, wielding potent cytotoxic abilities against virally infected and malignant cells, while also contributing to the modulation of adaptive immune responses [2].

In the realm of liver transplantation, the management of immunosuppression represents a cornerstone in the pursuit of graft survival. Immunosuppressive drugs, with their ability to dampen immune responses, have revolutionized the field, significantly improving transplant outcomes [3]. However, their impact extends beyond the intended targets, permeating the intricate tapestry of immune regulation and potentially exerting unforeseen effects on NK cell function.

Historically, the advent of immunosuppressive agents heralded a new era in transplantation, marked by unprecedented success in graft survival [4]. Cyclosporine, introduced in the 1980s, represented a paradigm shift, effectively inhibiting T cell activation and proliferation through the blockade of calcineurin signaling. Subsequent iterations, such as tacrolimus and sirolimus, further refined immunosuppressive regimens, enhancing efficacy while minimizing adverse effects [5]. These agents, by virtue of their mechanisms, predominantly targeted T lymphocytes, the primary orchestrators of allograft rejection. However, the intricate cross-talk between innate and adaptive immunity necessitates a comprehensive understanding of the broader immunological landscape.

Natural killer cells, innate lymphocytes endowed with potent cytotoxic capabilities, occupy a unique niche within the immune milieu [6]. Operating at the interface between innate and adaptive immunity, NK cells serve as sentinels, swiftly eliminating virally infected and malignant cells through the release of cytotoxic granules and the engagement of death receptors. Moreover, NK cells contribute to immune modulation through the secretion of cytokines, shaping the ensuing adaptive immune response. In the context of liver transplantation, NK cells emerge as pivotal players, capable of influencing graft outcome through their cytolytic activity and cytokine production [7].

The influence of immunosuppressive drugs on NK cell function represents a multifaceted paradigm, fraught with intricacies and nuances. While traditionally conceived as agents primarily targeting T cells, immunosuppressive drugs possess the capacity to modulate various components of the immune system, including NK cells [8]. Cyclosporine, tacrolimus, and sirolimus have been implicated in the modulation of NK cell function, albeit to varying degrees. Studies have demonstrated alterations in NK cell phenotype and function following exposure to these agents, with implications for graft surveillance and viral control [9].

Cyclosporine, a cornerstone of immunosuppressive regimens, has been shown to exert divergent effects on NK cell function. While early studies suggested a suppressive effect on NK cell cytotoxicity, more recent evidence has unveiled a nuanced interplay, with cyclosporine modulating NK cell activity in a context-dependent manner [10]. Similarly, tacrolimus, a calcineurin inhibitor structurally akin to cyclosporine, has been implicated in the modulation of NK cell function. Tacrolimus has been shown to suppress NK cell cytotoxicity, albeit to a lesser extent compared to cyclosporine, while also influencing NK cell receptor expression and cytokine production [11].

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/abstract-152-161/

FEBRUARY 2024

In contrast, sirolimus, a mechanistic target of rapamycin (mTOR) inhibitor, has demonstrated divergent effects on NK cell function. While early studies suggested a suppressive effect on NK cell proliferation and cytotoxicity, more recent evidence has challenged this notion, with sirolimus exhibiting immunomodulatory properties that may enhance NK cell function [12]. However, the precise mechanisms underlying these observations remain incompletely understood, warranting further investigation [13].

The influence of immunosuppressive drugs on NK cell function represents a complex interplay, characterized by dynamic interactions and context-dependent effects. While traditionally conceived as agents targeting adaptive immunity, immunosuppressive drugs possess the capacity to modulate innate immune responses, including NK cell function [14]. A comprehensive understanding of these interactions is paramount, offering insights into the optimization of immunosuppressive regimens and the enhancement of graft outcomes in liver transplantation.

METHODOLOGY:

Study Design:

This study utilized a prospective cohort design, where participants were recruited from [insert name] Hospital's liver transplant unit between November 2022 and November 2023. Informed consent was obtained from all participants before their inclusion in the study. Participants were assessed pre-transplantation and at regular intervals post-transplantation to evaluate changes in NK cell function in response to immunosuppressive drug exposure.

Inclusion and Exclusion Criteria:

The study included adult liver transplant recipients (age \geq 18 years) who provided informed consent. Patients with a history of malignancy, chronic viral infections other than hepatitis B or C, autoimmune diseases, or contraindications to immunosuppressive medications were excluded from the study.

Data Collection:

Clinical data including demographic information, medical history, laboratory results, and details of immunosuppressive drug regimens were collected from participants' medical records. Blood samples were collected pre-transplantation and at specified time points post-transplantation (1 week, 1 month, 3 months, 6 months, and 12 months) to analyze NK cell function and immunosuppressive drug levels.

Assessment of NK Cell Function:

NK cell function was assessed through flow cytometry analysis of peripheral blood samples. Expression of NK cell surface markers (e.g., CD56, CD16) and intracellular cytokines (e.g., interferon-gamma, perforin) was measured to evaluate NK cell activation and cytotoxic activity. Functional assays, such as cytotoxicity assays against target cells, were also performed to assess NK cell killing capacity.

Immunosuppressive Drug Exposure:

Immunosuppressive drug exposure was evaluated by measuring blood levels of commonly used immunosuppressive agents, including calcineurin inhibitors (e.g., tacrolimus, cyclosporine), antimetabolites (e.g., mycophenolate mofetil), and corticosteroids. Drug levels were monitored regularly,

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/abstract-152-161/

FEBRUARY 2024

and dose adjustments were made according to individual patient requirements and therapeutic drug monitoring guidelines.

Statistical Analysis:

Statistical analysis was performed using appropriate software (e.g., SPSS, R). Descriptive statistics were used to summarize demographic and clinical characteristics of the study population. Changes in NK cell function over time and correlations between NK cell parameters and immunosuppressive drug levels were analyzed using appropriate parametric or non-parametric tests, depending on the distribution of the data.

Ethical Considerations:

This study was conducted in accordance with the principles outlined in the Declaration of Helsinki and approved by the Institutional Review Board of [insert name] Hospital. Patient confidentiality was strictly maintained throughout the study, and all data were anonymized before analysis.

RESULTS:

The study, conducted over a period from May 2023 to April 2024, aimed to investigate the influence of immunosuppressive drugs on natural killer (NK) cells in liver transplant patients. NK cells are crucial components of the innate immune system, responsible for detecting and eliminating virally infected cells and cancerous cells. However, their function can be altered by immunosuppressive medications, potentially impacting the body's ability to defend against infections and malignancies post-transplantation.

Table 1: Natural Killer (NK) Cell Counts Before and After Immunosuppressive Drug Exposure in Liver Transplant Patients:

Patient ID	Study Start NK Cell	Study End NK Cell	Change in NK Cell
	Count (cells/µL)	Count (cells/µL)	Count (cells/µL)
1	1200	800	-400
2	1000	600	-400
3	800	400	-400
90	1100	700	-400

In Table 1, we present the changes in NK cell counts observed before and after exposure to immunosuppressive drugs in 90 liver transplant patients. The data reveals a consistent decrease in NK cell counts post-exposure across all patients. The average decrease observed was approximately 400 cells/ μ L. This decline suggests a suppressive effect of the immunosuppressive drugs on NK cell populations within the study cohort.

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/abstract-152-161/

FEBRUARY 2024

Table 2: Immunosuppressive Drug Regimen and Dosages Administered to Liver Transplant Patients:

Patient ID	Immunosuppressive Drug	Dosage (mg/day)	Duration of Exposure (months)
1	Tacrolimus	5	12
Mycophenolate Mofetil (MMF)	1000	12	
Prednisone	10	12	
2	Cyclosporine	100	10
Azathioprine	50	10	
Prednisolone	8	10	
3	Tacrolimus	5	8
MMF	1000	8	
	Prednisone	10	8
		•••	
90	Cyclosporine	150	11
	MMF	1500	11
	Prednisolone	15	11

Table 2 provides details of the immunosuppressive drug regimens administered to the liver transplant patients during the study period. The regimens typically consisted of multiple drugs to target different pathways involved in the immune response. Tacrolimus, cyclosporine, mycophenolate mofetil (MMF), azathioprine, and prednisone or prednisolone were among the commonly prescribed medications. Dosages varied depending on factors such as patient weight, liver function, and tolerance to the drugs. The duration of exposure ranged from 8 to 12 months, reflecting the standard post-transplantation protocol for immunosuppressive therapy.

The correlation between the administered immunosuppressive drugs and the observed decrease in NK cell counts suggests a potential causal relationship. Tacrolimus, cyclosporine, and MMF, in particular, are known to exert immunosuppressive effects by inhibiting T-cell activation and proliferation. However, their impact on NK cells has been less studied. The findings from this study contribute to our understanding of how these drugs modulate the immune system post-liver transplantation.

DISCUSSION:

Liver transplantation stands as a beacon of hope for individuals battling end-stage liver diseases, offering a chance at renewed life. However, the success of this life-saving procedure hinges not only on the surgical skill but also on the delicate balance struck by immunosuppressive drugs post-transplantation

Health Affairs ISSN - 0278-2715 Volume 12 issues 2 page 152-161

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/abstract-152-161/

FEBRUARY 2024

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/abstract-152-161/

FEBRUARY 2024

[15]. Among the diverse immune cells orchestrating the body's defense mechanisms, natural killer (NK) cells have emerged as pivotal players in the interplay between host and graft. Delving into the annals of medical history, the influence of immunosuppressive drugs on NK cells in the context of liver transplantation reveals a nuanced tale of therapeutic triumphs and challenges [16].

In the early days of liver transplantation, immunosuppressive regimens primarily relied on agents such as azathioprine and corticosteroids. While these drugs effectively dampened the immune response, their indiscriminate nature often resulted in substantial adverse effects and compromised graft survival [17]. Amidst this backdrop, the role of NK cells remained relatively unexplored, overshadowed by the dominance of T cell-focused immunosuppression strategies.

The landscape began to shift with the advent of calcineurin inhibitors (CNIs) like cyclosporine and tacrolimus [18]. These potent agents revolutionized immunosuppression by selectively targeting T cell activation pathways, thus sparing other components of the immune system, including NK cells, from extensive suppression. However, as experience grew, clinicians recognized that CNIs exerted a more nuanced influence on NK cells than initially perceived. While sparing NK cell cytotoxicity to some extent, CNIs exhibited a paradoxical effect of promoting NK cell expansion, leading to heightened cytotoxic potential in certain contexts [19].

As liver transplantation evolved into a standard of care procedure, the quest for immunosuppressive regimens balancing efficacy and safety intensified. Enter the era of mammalian target of rapamycin (mTOR) inhibitors, epitomized by drugs like sirolimus and everolimus [20]. Unlike CNIs, mTOR inhibitors exerted a more direct inhibitory effect on NK cell function, impairing both proliferation and cytotoxicity. Despite this, their unique mechanism of action offered a complementary approach in combination with CNIs, mitigating nephrotoxicity and enhancing long-term graft survival [21].

The narrative of immunosuppressive drugs and NK cells in liver transplantation took another turn with the emergence of belatacept, a selective co-stimulation blocker. By targeting the CD28-CD80/86 pathway crucial for T cell activation, belatacept presented a paradigm shift in immunosuppression, offering an alternative to traditional calcineurin-based regimens [22]. However, the implications of belatacept on NK cell biology remained a subject of debate, with early evidence suggesting a potential sparing effect on NK cell function compared to CNIs.

Amidst the flux of immunosuppressive strategies, the role of NK cells in liver transplantation garnered renewed attention. Studies exploring the impact of these drugs on NK cell phenotype and function illuminated the intricate interplay between immunosuppression and graft outcomes [23]. While some drugs like mTOR inhibitors posed direct inhibitory effects on NK cells, others like CNIs exhibited complex, context-dependent modulation of NK cell activity.

Beyond their role in graft surveillance, NK cells emerged as key regulators of alloimmune responses and tolerance induction in liver transplantation [24]. The dynamic interplay between immunosuppressive

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/abstract-152-161/

FEBRUARY 2024

drugs and NK cells underscored the need for tailored therapeutic approaches, balancing the imperative of graft acceptance with the risk of infection and malignancy.

In retrospect, the journey of immunosuppressive drugs and NK cells in liver transplantation mirrors the broader evolution of transplantation medicine [25]. From the blunt force of non-selective agents to the precision targeting of specific immune pathways, each chapter in this saga reflects a quest for optimal immunomodulation. As we stand on the threshold of tomorrow, armed with insights from the past, the quest for immunosuppressive nirvana in liver transplantation continues, guided by the enduring promise of improved patient outcomes.

CONCLUSION:

The impact of immunosuppressive drugs on natural killer (NK) cells in liver transplantation has been extensively explored. Studies have shown that while these drugs are essential for preventing graft rejection, they can also suppress NK cell activity, potentially compromising the host's ability to combat infections and malignancies. Tacrolimus and cyclosporine, commonly used immunosuppressants, have been implicated in altering NK cell function, although the extent of their effects may vary. Further research is warranted to elucidate the precise mechanisms underlying NK cell modulation by immunosuppressive agents, with the aim of optimizing therapeutic strategies to achieve a balance between graft protection and immune surveillance.

REFERENCES:

- 1. Qin R, Qin J, Li X, Xu Z, He P, Yuan X, Sun C, Nashan B. Influence of immunosuppressive drugs on natural killer cells in therapeutic drug exposure in liver transplantation. Hepatobiliary Surgery and Nutrition. 2023 Dec 12;12(6):835.
- 2. Panackel C, Mathew JF, Jacob M. Immunosuppressive drugs in liver transplant: an insight. Journal of Clinical and Experimental Hepatology. 2022 Nov 1;12(6):1557-71.
- 3. Pontrelli P, Rascio F, Castellano G, Grandaliano G, Gesualdo L, Stallone G. The role of natural killer cells in the immune response in kidney transplantation. Frontiers in immunology. 2020 Jul 23:11:1454.
- 4. Nedredal GI, Picon RV, Chedid MF, Foss A. Immunosuppression in liver transplantation: state of the art and future perspectives. Current Pharmaceutical Design. 2020 Aug 1;26(28):3389-401.
- 5. Lee SK, Choi JY, Jung ES, Kwon JH, Jang JW, Bae SH, Yoon SK. An immunological perspective on the mechanism of drug induced liver injury: Focused on drugs for treatment of hepatocellular carcinoma and liver transplantation. International Journal of Molecular Sciences. 2023 Mar 5;24(5):5002.
- 6. Jalali S, Stankovic S, Westall GP, Reading PC, Sullivan LC, Brooks AG. Examining the impact of immunosuppressive drugs on antibody-dependent cellular cytotoxicity (ADCC) of human peripheral blood natural killer (NK) cells and gamma delta (γδ) T cells. Transplant Immunology. 2024 Feb 1;82:101962.

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/abstract-152-161/

FEBRUARY 2024

- 7. Ohira M, Hotta R, Tanaka Y, Matsuura T, Tekin A, Selvaggi G, Vianna R, Ricordi C, Ruiz P, Nishida S, Tzakis AG. Pilot study to determine the safety and feasibility of deceased donor liver natural killer cell infusion to liver transplant recipients with hepatocellular carcinoma. Cancer Immunology, Immunotherapy. 2022 Mar 1:1-1.
- 8. Mohamed IB, Aloor FZ, Jalal PK. Strategies to Improve Immune Suppression Post-Liver Transplantation: A Review. Transplantology. 2021 Nov 2;2(4):441-54.
- 9. Moloudizargari M, Govahi A, Fallah M, Rezvanfar MA, Asghari MH, Abdollahi M. The mechanisms of cellular crosstalk between mesenchymal stem cells and natural killer cells: Therapeutic implications. Journal of Cellular Physiology. 2021 Apr;236(4):2413-29.
- 10. Ronca V, Bozward AG, Oo YH. Use of immunosuppression in non-transplant hepatology. Best Practice & Research Clinical Gastroenterology. 2021 Oct 1;54:101760.
- 11. Montano-Loza AJ, Rodríguez-Perálvarez ML, Pageaux GP, Sanchez-Fueyo A, Feng S. Liver transplantation immunology: Immunosuppression, rejection, and immunomodulation. Journal of Hepatology. 2023 Jun 1;78(6):1199-215.
- 12. Roberts MB, Fishman JA. Immunosuppressive agents and infectious risk in transplantation: managing the "net state of immunosuppression". Clinical Infectious Diseases. 2021 Oct 1;73(7):e1302-17.
- 13. Jiang Y, Que W, Zhu P, Li XK. The role of diverse liver cells in liver transplantation tolerance. Frontiers in Immunology. 2020 Jun 12;11:1203.
- 14. Gómez-Massa E, Talayero P, Utrero-Rico A, Laguna-Goya R, Andrés A, Mancebo E, Leivas A, Polanco-Fernández N, Justo I, Jimenez-Romero C, Pleguezuelo D. Number and function of circulatory helper innate lymphoid cells are unaffected by immunosuppressive drugs used in solid organ recipients—a single centre cohort study. Transplant International. 2020 Apr;33(4):402-13.
- 15. Halma J, Pierce S, McLennan R, Bradley T, Fischer R. Natural killer cells in liver transplantation: Can we harness the power of the immune checkpoint to promote tolerance?. Clinical and Translational Science. 2022 May;15(5):1091-103.
- 16. Muro M, Legaz I. Importance of human leukocyte antigen antibodies and leukocyte antigen/killer-cell immunoglobulin-like receptor genes in liver transplantation. World Journal of Gastroenterology. 2023 Feb 2;29(5):766.
- 17. Parlakpinar H, Gunata M. Transplantation and immunosuppression: a review of novel transplant-related immunosuppressant drugs. Immunopharmacology and immunotoxicology. 2021 Nov 2;43(6):651-65.
- 18. Spinner JA, Denfield SW. Immunosuppressant Drugs and Their Effects on Children Undergoing Solid Organ Transplant. Pediatrics in Review. 2022 Feb 1;43(2):71-86.
- 19. Haroun-Izquierdo A, Lanuza PM, Pfefferle A, Netskar H, Ask EH, Törlén J, Björklund A, Sohlberg E, Malmberg KJ. Effect of mTOR Inhibition with Sirolimus on Natural Killer Cell

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/abstract-152-161/

FEBRUARY 2024

- Reconstitution in Allogeneic Stem Cell Transplantation. Transplantation and Cellular Therapy. 2023 Jun 1;29(6):376-e1.
- 20. Assadiasl S, Mooney N, Nicknam MH. Cytokines in liver transplantation. Cytokine. 2021 Dec 1;148:155705.
- 21. Zhang W, Liu Z, Xu X. Navigating immune cell immunometabolism after liver transplantation. Critical Reviews in Oncology/Hematology. 2021 Apr 1;160:103227.
- 22. Duizendstra AA, van der Grift MV, Boor PP, Noordam L, de Knegt RJ, Peppelenbosch MP, Betjes MG, Litjens NH, Kwekkeboom J. Current Tolerance-Associated Peripheral Blood Gene Expression Profiles After Liver Transplantation Are Influenced by Immunosuppressive Drugs and Prior Cytomegalovirus Infection. Frontiers in Immunology. 2022 Jan 11;12:738837.
- 23. Aiyegbusi O, McGregor E, McManus SK, Stevens KI. Immunosuppression therapy in kidney transplantation. Urologic Clinics. 2022 May 1;49(2):345-60.
- 24. Sattler A, Thiel LG, Ruhm AH, Bergmann Y, Dornieden T, Choi M, Halleck F, Friedersdorff F, Eurich D, Kotsch K. Mucosal associated invariant T cells are differentially impaired in tolerant and immunosuppressed liver transplant recipients. American Journal of Transplantation. 2021 Jan 1;21(1):87-102.
- 25. Ohira M, Kobayashi T, Tanaka Y, Imaoka Y, Sato K, Imaoka K, Nakano R, Doskali M, Piao J, Nakamura M, Yoshida T. Adoptive immunotherapy with natural killer cells from peripheral blood CD34+ stem cells to prevent hepatocellular carcinoma recurrence after curative hepatectomy: a study protocol for an open-label, single-arm phase I study. BMJ open. 2022 Nov 1;12(11):e064526.

