

The Function of Allergic Rhinitis in the Onset of Chronic Sinusitis: Risk Factors and Preventive Measures

¹Faiza Maqsood, ²Nazneen Tabassum, ³Marwa Riaz, ⁴Qaisar Mumtaz, ⁵Khizer Javed But, ⁶Dr Mian Amer Majeed

¹Mayo Hospital Lahore ²Sir Gangaram Hospital Lahore

³UHS, Lahore

⁴PIMS, Islamabad

⁵Services Hospital Lahor

⁶CMH Kharian Medical College, Kharian Cantt

Abstract

Background:

Allergic rhinitis (AR) is an inflammatory nasal mucosal disease that has been linked to the etiology of chronic rhino sinusitis (CRS). Knowledge of the relationship between AR and CRS is important in order to determine populations at risk and enhance preventive intervention.

Objective:

To review the contribution of allergic rhinitis to the onset of chronic sinusitis, assess factors related to risk, and indicate preventive strategies.

Methods:

A prospective observational study was conducted on 200 patients diagnosed with allergic rhinitis. Participants were followed for two years to assess the incidence of CRS and associated risk factors. Clinical data, symptom severity, allergy history, and environmental exposures were recorded. Preventive measures, including allergen avoidance and medical therapy, were analyzed for their effectiveness in reducing CRS progression.

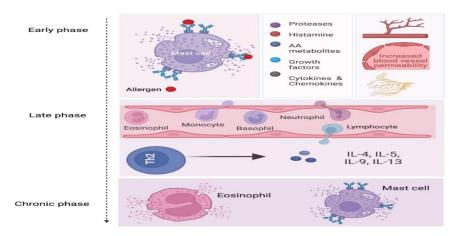
Results:

Of 200 patients with AR, 68 (34%) had developed CRS during two years. The risk factors were pronounced nasal obstruction, asthma comorbidity, allergy family history, and exposure to environmental toxins. Preventive interventions like intranasal corticosteroids, antihistamines, and allergen avoidance markedly reduced CRS risk from those receiving only symptomatic care.

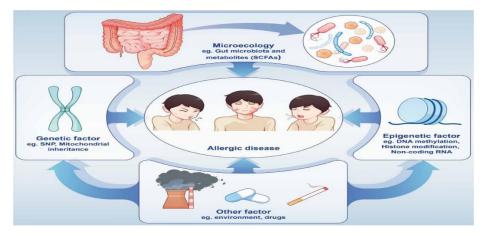
Conclusion:

Allergic rhinitis is a major contributor to the pathogenesis of chronic sinusitis. Identification of risk factors at an early stage and preventive management can decrease CRS progression as well as enhance the quality of life.

Keywords: Allergic rhinitis, Chronic sinusitis, Risk factors, Preventive strategies, Nasal inflammation


Introduction

Allergic rhinitis (AR) is a highly common chronic respiratory disorder across the globe, occurring in 20–30% of the population [1]. It is diagnosed by nasal congestion, rhinorrhea, sneezing, and itching, typically



precipitated by exposure to such allergens as dust mites, pollen, animal dander, and molds [2]. While typically thought to be an innocuous condition, AR has significant consequences on health and quality of life [3]. It is associated with sleep impairment, decreased concentration, and lower productivity, as well as being a potential risk factor for other chronic respiratory disease [4]. Chronic rhino sinusitis (CRS) can be defined as long-standing inflammation of the paranasal sinus mucosa and nasal mucosa for greater than 12 weeks with or without facial pressure, hyposmia, postnasal drip, and nasal obstruction. CRS is a polyfactorial illness, but evidence increasingly points toward the strong relationship between allergic rhinitis and the evolution of chronic sinus disease [5].

Allergic inflammation causes chronic mucosal edema, mucociliary dysfunction, and sinus ostial obstruction, which predispose to secondary bacterial colonization and chronic inflammation. A number of studies have shown that patients with allergic rhinitis are at increased risk for developing CRS, particularly in the presence of other risk factors like asthma, smoking, or environmental exposure [6]. The pathophysiological connection is the chronic eosinophilic inflammation and remodeling of the nasal mucosa provoked by AR, which brings about structural and functional alterations in sinonasal physiology [7].

Despite the obvious link between AR and CRS, prevention measures are generally underused. Intranasal corticosteroids, antihistamines, immunotherapy, and allergen avoidance may decrease inflammation and have the potential to stop the transition from AR to CRS. Patient compliance with long-term treatment is still a problem [8]. This research aimed to assess the contribution of AR to the development of CRS, determine prominent risk factors, and examine the efficacy of preventive measures in mitigating CRS

incidence [9]. With an enhanced understanding of this association, clinicians can implement focused preventive strategies and enhance outcomes for high-risk groups.

Methodology

This prospective observational study was conducted at a tertiary care hospital from 2020 to 2023. A total of 200 patients aged 18–55 years with clinically diagnosed allergic rhinitis were enrolled. Diagnosis was based on clinical history, skin prick testing, and serum IgE levels. Inclusion criteria: Patients with confirmed AR symptoms for at least one year. Exclusion criteria: Previous sinus surgery, immunodeficiency, chronic systemic diseases, or existing CRS at baseline. The individuals were followed up for two years to evaluate the incidence of chronic sinusitis. CRS was established based on EPOS criteria, with the need for symptoms lasting >12 weeks along with radiological findings. Information gathered: Demographics, history of allergy, familial history of atopy, presence of asthma, exposure to air pollutants, smoking status, and symptom severity. Preventive interventions like regular intranasal corticosteroid usage, antihistamines, allergen avoidance, and immunotherapy were recorded. Statistical analysis: Data were analyzed with SPSS version 25. Categorical variables were compared by applying chi-square tests, and continuous variables were evaluated through t-tests. Logistic regression was conducted to determine independent risk factors for the development of CRS. A p-value of less than 0.05 was regarded as statistically significant.

Results

Among 200 patients with allergic rhinitis, 68 (34%) had developed chronic sinusitis in two years. Risk of CRS was higher in patients with constant nasal obstruction, concomitant asthma, family history of atopy, and exposure to environmental irritants. Preventive treatments like intranasal corticosteroids, antihistamines, and avoidance of allergens lowered the incidence of CRS in comparison to those given only symptomatic medication.

Table 1: Risk Factors for CRS in Patients with AR

Risk Factor	CRS (n=68)	No CRS (n=132)	p-value
Persistent nasal obstruction	53 (76%)	69 (51.5%)	0.01*
Asthma comorbidity	27 (41%)	23 (16.7%)	0.003
Family history of allergy	41 (58.8%)	47 (36.4%)	0.02
Exposure to pollutants	33 (50%)	39 (28.8%)	0.03

Table 2: Effect of Preventive Strategies on CRS Development

Preventive Strategy	CRS Incidence (%)	p-value
Intranasal corticosteroids	19%	0.02
Antihistamines	23%	0.01
Allergen avoidance	21%	0.02
Symptomatic treatment only	41%	_

Abstract Link: https://health-affairs.com/13-8-4261-4266/

August 2025

Health Affairs ISSN - 0278-2715 Volume 13 ISSUE 8 page 4261-4266 Journal link: https://health-affairs.com/ Abstract Link: https://health-affairs.com/13-8-4261-4266/ August 2025

Discussion

This study shows a well-established association between allergic rhinitis and development of chronic sinusitis [10]. Close to one-third of AR patients developed CRS within two years, which highlights the necessity for early detection and management of AR as a preventive measure [11]. Nasal obstruction was the most important risk factor, presumably because recurrent mucosal swelling causes blockage of sinus ostia and impaired drainage. The presence of comorbid asthma also augmented CRS risk, demonstrating the common pathophysiological processes of airway inflammation in the "united airway" model [12]. Environmental exposures, especially pollutants and allergens, further enhanced the risk of chronic sinus disease [13]. Preventive interventions were successful in lowering the incidence of CRS. Intranasal corticosteroid uses on a regular basis greatly reduced progression, reinforcing their position as the cornerstone therapy of allergic rhinitis. Antihistamines and avoidance of allergens also showed protective effects, emphasizing the value of holistic management over symptom relief alone [14]. These results are consistent with previous studies indicating that early and regular anti-inflammatory treatment in AR has the potential to modify the natural history of sinonasal disease. Despite this, this study also highlights issues in clinical practice [15]. Adherence to preventive therapies by patients is frequently suboptimal, particularly when symptoms are mild or seasonal. Education regarding the possible long-term implications of AR if untreated might enhance compliance [16]. Another weakness of this study is its single-center nature and dependence on self-reporting of adherence to preventive therapy. Genetic predisposition and long-term outcome were also not adequately addressed. In spite of these shortcomings, the findings reinforce the premise that allergic rhinitis is not a stand-alone nasal disease but a component of a continuum of airway disease that predisposes towards CRS [17]. Proactive management approaches to address inflammation, allergen exposure, and comorbidities can decrease CRS's global burden significantly.

Conclusion

Allergic rhinitis is a major precipitant in the formation of chronic sinusitis, and risk factors are chronic nasal obstruction, asthma, family history of allergy, and environmental exposure. Preventive measures like intranasal corticosteroids, antihistamines, and avoidance of allergens are effective in minimizing the risk of progression. Early diagnosis and active treatment of AR are important in avoiding chronic sinus disease and enhancing patient outcomes.

References

- 1. Scadding, G. K., Gray, C., Conti, D. M., McDonald, M., Backer, V., Scadding, G., ... & Hellings, P. W. (2024). Pre-asthma: a useful concept? A EUFOREA paper. Part 2—late onset eosinophilic asthma. *Frontiers in allergy*, *5*, 1404735.
- Maccarone, J., Redlich, C. A., Timmons, A., Korpak, A. M., Smith, N. L., Nakayama, K. S., ... & Garshick, E. (2025). Sinusitis and rhinitis among US veterans deployed to Southwest Asia and Afghanistan after September 11, 2001. *Journal of Allergy and Clinical Immunology: Global*, 4(1), 100367.
- 3. Lira Tenório, M. D., dos Santos Menezes Siqueira, G. V., Costa Caldas, G., Pacheco de Almeida, R., Ribeiro de Jesus, A., & Martins-Filho, P. R. (2024). Asthma as a risk factor and allergic rhinitis as a protective factor for COVID-19 severity: a case-control study. *European Archives of Oto-Rhino-Laryngology*, 281(12), 6677-6686.
- 4. Perret, J. L., Idrose, N. S., Walters, E. H., Bui, D. S., Lowe, A. J., Lodge, C. J., ... & Dharmage, S. C. (2024). Childhood infections, asthma and allergy trajectories, and chronic rhinosinusitis in

August 2025

HEALTH AFFAIRS

middle age: A prospective cohort study across six decades. Allergy, 79(10), 2717-2731.

- 5. Hasan, A., Khalid, A., & Jafri, S. Q. A. (2024). The Epidemiology, Risk Factors, and Treatment Outcomes of Chronic Rhinosinusitis in Urban and Rural Populations of Lahore. *Annals of PIMS-Shaheed Zulfiqar Ali Bhutto Medical University*, 20(4), 855-860.
- 6. Palumbo, S., Irish, J., Narendran, N., Stern, D. A., Volpe, S., Le, C. H., ... & Chang, E. H. (2025). The rs6967330 minor allele in CDHR3 is a significant risk factor for severe acute exacerbations in chronic rhinosinusitis. *Journal of Allergy and Clinical Immunology*, 155(2), 583-593.
- 7. Sánchez, J., Álvarez, L., Bedoya, J., Peñaranda, D., Vanegas, G., Celis, C., ... & Peñaranda, A. (2024). Role of specific immunoglobulin-E in chronic rhinosinusitis: Its clinical relevance according to nasal challenge test. *World Allergy Organization Journal*, 17(10), 100953.
- 8. Peters, A. T., Tan, B. K., & Stevens, W. W. (2024). Consultation for chronic rhinosinusitis with nasal polyps and asthma: clinical presentation, diagnostic workup, and treatment options. *The Journal of Allergy and Clinical Immunology: In Practice*, *12*(11), 2898-2905.
- 9. Zaitoun, F., Al Hameli, H., Karam, M., Gutta, R., Wustenberg, E., Arora, T., & Abuzakouk, M. (2024). Management of Allergic Rhinitis in the United Arab Emirates: Expert Consensus Recommendations on Allergen Immunotherapy. *Cureus*, *16*(7).
- 10. Eriksson, S., Giezeman, M., Hasselgren, M., Janson, C., Kisiel, M. A., Montgomery, S., ... & Lisspers, K. (2024). Risk factors associated with asthma control and quality of life in patients with mild asthma without preventer treatment, a cross-sectional study. *Journal of Asthma and Allergy*, 621-632.
- 11. Lee, H., Park, J., Lee, M., Kim, H. J., Kim, M., Kwon, R., ... & Yon, D. K. (2024). National trends in allergic rhinitis and chronic rhinosinusitis and COVID-19 pandemic-related factors in South Korea, from 1998 to 2021. *International Archives of Allergy and Immunology*, 185(4), 355-361.
- 12. Oluchi, O. K., Charles, N. C., Charles, I. I., OCHANYA, I. B., & Makuochukwu, O. I. (2025). Allergic Rhinorrhea: Prevalence, Severity, and Risk Factors among Students at University of Nigeria, Enugu Campus. *Sch J Med Case Rep*, *6*, 1402-1407.
- 13. Sarah, C. O. S., & Ashari, N. S. M. (2024). Exploration of Allergic Rhinitis: Epidemiology, Predisposing Factors, Clinical Manifestations, Laboratory Characteristics, and Emerging Pathogenic Mechanisms. *Cureus*, 16(10).
- Zhou, X., Wang, D., Cao, S., Tu, Y., Chen, R., Huang, H., & Lou, W. (2025). Rheumatoid Arthritis Aggravates Disease Severity and the Risk of Postoperative Recurrence in Chronic Rhinosinusitis. *Journal of Inflammation Research*, 9401-9411.
- Chen, H., Wang, L., Zhang, J., Yan, X., Yu, L., & Jiang, Y. (2025). The Bidirectional and Temporal Associations of Depression With Allergic Rhinitis and Chronic Rhinosinusitis: A Nationwide Cross-Sectional Study. *Allergy, Asthma & Immunology Research*, 17(2), 241.
- 16. Yuan, H., Yang, Y., Zhang, B., Li, A., Su, J., Ding, X., ... & Zhang, H. (2025). Construction and Analysis of Risk Prediction Model of Eosinophilic Chronic Rhinosinusitis With Nasal Polyps: A Cross-Sectional Study in Northwest China. *Clinical Otolaryngology*, 50(1), 39-45.
- 17. Lubner, R. J., Krysinski, M., Li, P., Chandra, R. K., Turner, J. H., & Chowdhury, N. I. (2025, April). Long-Term Particulate Matter Exposure May Increase Risk of Chronic Rhinosinusitis WIth Nasal Polyposis: Results from an Exposure-Matched Study. In *International Forum of Allergy & Rhinology* (p. e23589).

