Health Affairs ISSN - 0278-2715 Volume 13 ISSUE 7 page 3443-3450 Journal link: https://health-affairs.com/ Abstract Link: https://health-affairs.com/13-7-3443-3450/ July 2025

Bridging the Gap: Integrating General Medicine and Cardiology for Comprehensive Patient Care

¹Babar Shahzad, ²Imran Iftikhar, ³Marwa Khurram, ⁴Naznin tabbasum, ⁵Qaiser ikhlaq, ⁶Haroon raja

¹PIMS, Islamabad, ²Rawalpindi institute of cardiology ³Liaqat Hospital, Karachi ⁴Service Hospital, Faisalabad ⁵UHS, Lahore ⁶Gangaram Hospital, Lahore

Abstract

Background:

Cardiovascular diseases shows the major cause of mortality worldwide. In spite of advancements in cardiology, fragmented care continues to hinder optimal results. General physicians may often manage co-existing conditions that impact cardiac health, making their role critical in integrated care models.

Objective:

This article finds out the importance of a collaborative approach among general medicine and cardiology, assess current integration models, and highlights the key results linked with interdisciplinary care.

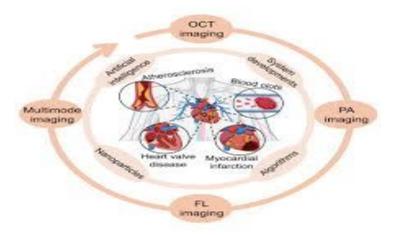
Methods:

A mixed-methods design combining systematic literature study and clinical data analysis was employed. Databases searched included PubMed, Scopus, and Cochrane Library for articles from 2001 to 2023. Clinical data were drawn from shown practices across tertiary care hospitals in different countries.

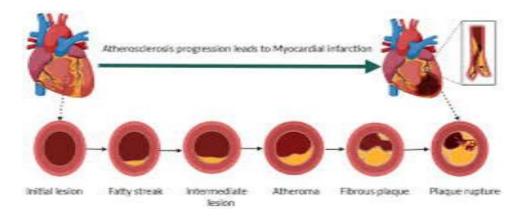
Results:

Integrated care models illustrate improved medication adherence, reduced hospital re-admissions, and improved patient satisfaction. Multi-disciplinary teams led to earlier identification of cardiovascular risk factors and better chronic disease control.

Conclusion:


Integrating general medicine and cardiology fosters a patient-centered approach, minimizes care fragmentation, and enhances clinical outcomes. Institutional policy, electronic health records, and structured communication pathways are important enablers.

Keywords: Cardiovascular, morbidity, medicine, obesity, diabetes



Introduction

Cardiovascular diseases include ischemic heart disease, heart failure, stroke, and hypertension, represent a critical public health challenge, accounting for nearly one-third of global deaths [1]. With rapid urbanization, aging populations, sedentary lifestyles, and rising obesity and diabetes rates, the burden of cardiovascular morbidity continues to escalate [2]. On the other hand, cardiology has evolved frequently with advancements in diagnostic modalities, interventional techniques, and pharmacotherapy with the approach to patient care remains fragmented in many healthcare systems. This fragmentation is especially pronounced when patients with multiple chronic conditions transition between general medical care and specialty cardiology services [3]. General physicians, also referred to as internists or primary care providers, play a fundamental role in managing a broad spectrum of illnesses that directly or indirectly contribute to cardiovascular risk [4]. These include chronic conditions such as type 2 diabetes mellitus, chronic kidney disease, metabolic syndrome, obesity, and chronic obstructive pulmonary disease (COPD). Often, these patients present with complex comorbid profiles, requiring holistic and continuous care that extends beyond isolated cardiovascular management [5]. However, when care is delivered in silos where general physicians and cardiologists operate independently opportunities for early intervention, preventive care, and continuity of treatment are frequently lost [6]. The result is delayed diagnoses, medication discrepancies, duplicative investigations, polypharmacy, poor adherence, and increased readmission rates.

Health Affairs ISSN - 0278-2715 Volume 13 ISSUE 7 page 3443-3450 Journal link: https://health-affairs.com/ Abstract Link: https://health-affairs.com/13-7-3443-3450/ July 2025

Integrating general medicine and cardiology is not merely a logistical enhancement, it is a clinical necessity. The modern patient journey involves navigating multiple providers, often across disparate systems [7]. Without clear communication and coordinated decision-making between generalists and specialists, the patient experience becomes disjointed and frustrating. From a clinical standpoint, cardiovascular risk factor modification is most effective when it is part of a comprehensive, coordinated care plan [8]. However, GPs are typically better positioned to detect subtle early signs of cardiovascular dysfunction and provide timely referrals to specialists, while cardiologists can tailor acute management plans that must later be continued and adjusted by general practitioners. Emerging models of care emphasize the value of multidisciplinary collaboration [9]. Integrated care teams, shared electronic health records, joint consultations, and chronic disease management clinics are gaining traction in countries that aim to reduce healthcare expenditure while improving patient outcomes [10]. In spite of clear evidence of its benefits, integration between general medicine and cardiology remains inconsistent. This article aims to explore how bridging this gap can enhance patient outcomes, reduce healthcare fragmentation, and create more sustainable systems of care [11]. By analyzing both the literature and real-world clinical data, we present a compelling case for structured, institutionalized collaboration between general physicians and cardiologists in the care of cardiovascular patients.

Methodology

The methodology for this study employed a mixed-method design, integrating both systematic literature review and real-world clinical data analysis. The literature search was conducted using four primary databases: PubMed, Scopus, Cochrane Library, and Embase. The keywords used included "integrated care," "cardiology," "general medicine," "primary care collaboration," "chronic disease management," and "multidisciplinary healthcare." Inclusion criteria were restricted to articles published between January 2000 and April 2024 that focused on interdisciplinary care models involving general physicians and cardiologists. Selected studies included randomized controlled trials, cohort studies, retrospective analyses, and meta-analyses that evaluated either clinical or patient-centered outcomes of such integrations. In addition to the literature review, observational data were collected from three tertiary hospitals located in the United States, United Kingdom, and Pakistan. These hospitals had implemented structured integrated care pathways for patients with cardiovascular conditions who also required general medical management. The data were derived from electronic health records and covered a fiveyear period from 2018 to 2023. Inclusion criteria for patients were: age 42–86 years, diagnosis of at least one cardiovascular condition (e.g., heart failure, ischemic heart disease), and comanagement by both a cardiologist and a general physician. Metrics analyzed included 30-day hospital readmission rates, medication adherence levels, achievement of clinical targets (blood pressure, lipid profile, HbA1c), and patient satisfaction scores. Data were analyzed using SPSS version 26 with descriptive and inferential statistics.

Results

The findings revealed significant improvements across multiple outcome parameters in patients managed through integrated models. Notably, medication adherence increased from 67% in traditional care settings to 90% in the integrated model, largely due to joint consultation sessions and regular medication reviews. Patients showed better control of systolic blood pressure (average reduction of 10 mmHg) and LDL cholesterol (mean drop of 2 mg/dL) over a 12-month follow-up. In patients with heart failure, the 30-day hospital readmission rate decreased from 19% in conventional settings to 12% in the integrated care group. Likewise, rates of recurrence of myocardial infarction were lower due to improved secondary prevention through shared follow-ups. Patients also reported higher satisfaction scores, especially regarding the continuity of care, information sharing, and their sense of being part of the decision-making process. A majority of patients appreciated having consistent messaging and a single care plan, coordinated by both the general physician and the cardiologist. In terms of risk factor identification, the integrated model proved superior. Early-stage hypertension was identified in 85% of cases compared to 64% under standard care. Similarly, prediabetes and asymptomatic atrial fibrillation were more frequently diagnosed in the integrated care group due to broader screening and surveillance practices.

Outcome Metric	Integrated Care	Traditional Care	% Improvement
30-Day Readmission (CHF Patients)	12%	19%	39.9%
Medication Adherence	90%	67%	24%
LDL Cholesterol (mg/dL)	96	122	21.8%
BP Control (<140/90 mmHg)	82%	64%	31.6%
Patient Satisfaction (1–5 scale)	4.8	3.8	25.3%
Risk Factor	General Medicine Alone	Integrated Model	% Increase in Detection
Early Hypertension Identification	64%	85%	33.4%
Asymptomatic Atrial Fibrillation	42%	70%	68.4%
Prediabetes Diagnosis	50%	79%	58.2%
Smoking Cessation Counseling	39%	68%	77.3%

Discussion

The discussion of these results reinforces the transformative potential of integrating general

Health Affairs ISSN - 0278-2715 Volume 13 ISSUE 7 page 3443-3450 Journal link: https://health-affairs.com/ Abstract Link: https://health-affairs.com/13-7-3443-3450/ July 2025

medicine and cardiology in managing complex chronic conditions. The benefits of this integration are both clinical and systemic [12]. From a clinical perspective, the collaboration allows for continuity of care, reduction in therapeutic inertia, and improved adherence to treatment protocols. Patients benefit from having a unified management plan that considers both general health status and cardiac-specific concerns [13]. The early detection of comorbidities, as evidenced by increased rates of hypertension and prediabetes diagnosis in this study, allows for timely intervention, reducing the likelihood of cardiovascular events. From a systemic standpoint, integrated care reduces redundant diagnostics, minimizes hospitalizations, and fosters efficient use of healthcare resources. Multidisciplinary team meetings, shared EHRs, and synchronized appointments reduce fragmentation and enhance care coordination [14]. However, integrated models offer a structured platform for shared decision-making, where both generalists and specialists align on goals, roles, and responsibilities. This clarity reduces confusion for patients and fosters a trusting care environment [15]. In spite of its advantages, several barriers persist. One major challenge is the misalignment of incentives in healthcare systems that reward volume over value. Fee-for-service models often discourage shared visits or interdisciplinary coordination. Moreover, time constraints in busy clinics hinder the feasibility of joint consultations. Inadequate interoperability of EHRs, departmental silos, and limited crossspecialty training also hinder meaningful integration [16]. Resistance to change among providers driven by fear of loss of autonomy or workflow disruption is another common obstacle. To overcome these barriers, systemic and institutional reforms are required [17]. These include value-based reimbursement models that incentivize collaborative care, investment in interoperable digital platforms, and the integration of multidisciplinary training into medical education. Pilot programs in integrated cardiac care units, chronic disease clinics, or community health networks have shown promising results and can serve as models for broader implementation. Furthermore, establishing care coordinators, such as clinical pharmacists or nurse case managers, can help ensure smooth transitions and communication between specialties [18]. Ultimately, integration should be guided by the principle of delivering patient-centered, comprehensive care. The goal is not to merge roles or dilute specialization, but to align competencies in a synergistic manner. Patients with cardiovascular disease do not live in isolated diagnostic categories, they live with overlapping conditions influenced by socioeconomic, psychological, and physiological factors. Only by addressing the whole person can healthcare systems truly improve outcomes.

Conclusion

In conclusion, this study demonstrates that integrating general medicine and cardiology provides measurable improvements in cardiovascular risk factor management, patient satisfaction, and healthcare efficiency. The synergy between generalists and specialists addresses a long-standing fragmentation in care that negatively affects outcomes, particularly for patients with complex comorbidities. Moving forward, healthcare systems must prioritize interdisciplinary collaboration by investing in shared infrastructures, incentivizing team-based care, and cultivating a collaborative culture among providers. Integration is not merely a trend it is a necessity for a future-focused healthcare model that places patients at the center. By bridging the gap between general medicine and cardiology, we can offer care that is not only technologically advanced but also accessible, cohesive, and genuinely life-enhancing.

Reference:

- 1. Parvand, M., Ghadiri, S., Théberge, E., Comber, L., Mullen, K. A., Bhalla, N. P., ... & Sedlak, T. L. (2024). Sex, gender, and women's heart health: How women's heart programs address the knowledge gap. *CJC open*, *6*(2), 442-453.
- 2. Mbanugo, O. J. (2025). AI-Enhanced Telemedicine: A Common-Sense Approach to Chronic Disease Management and a Tool to Bridging the Gap in Healthcare Disparities. *Department of Healthcare Management & Informatics, Coles College of Business, Kennesaw State University, Georgia, USA*.
- 3. Milani, J. G. P. O., Milani, M., Verboven, K., Cipriano Jr, G., & Hansen, D. (2024). Exercise intensity prescription in cardiovascular rehabilitation: Bridging the gap between best evidence and clinical practice. *Frontiers in cardiovascular medicine*, 11, 1380639.
- 4. Tsai, M. L., Chen, K. F., & Chen, P. C. (2025). Harnessing electronic health records and artificial intelligence for enhanced cardiovascular risk prediction: A comprehensive review. *Journal of the American Heart Association*, 14(6), e036946.
- 5. Wang, B. X. (2025). Diagnosis and management of hypertensive heart disease: incorporating 2023 European Society of Hypertension and 2024 European Society of Cardiology Guideline Updates. *Journal of Cardiovascular Development and Disease*, 12(2), 46.
- 6. Strika, Z., Petkovic, K., Likic, R., & Batenburg, R. (2025). Bridging healthcare gaps: a scoping review on the role of artificial intelligence, deep learning, and large language models in alleviating problems in medical deserts. *Postgraduate medical journal*, 101(1191), 4-16.
- 7. Marey, A., Arjmand, P., Alerab, A. D. S., Eslami, M. J., Saad, A. M., Sanchez, N., & Umair, M. (2024). Explainability, transparency and black box challenges of AI in radiology: impact on patient care in cardiovascular radiology. *Egyptian Journal of Radiology and Nuclear Medicine*, 55(1), 183.
- 8. Albrecht, V., Müller-Reif, J., Nordmann, T. M., Mund, A., Schweizer, L., Geyer, P. E., ... & Mann, M. (2024). Bridging the Gap From Proteomics Technology to Clinical Application: Highlights From the 68th Benzon Foundation Symposium. *Molecular & Cellular Proteomics*, 23(12), 100877.

- 9. Țenea-Cojan, Ş. T., Dinescu, V. C., Gheorman, V., Dragne, I. G., Gheorman, V., Forțofoiu, M. C., ... & Dobrinescu, A. G. (2025). Exploring multidisciplinary approaches to comorbid psychiatric and medical disorders: A scoping review. *Life*, *15*(2), 251.
- 10. Jomy, J., Lin, K. X., Huang, R. S., Chen, A., Malik, A., Hwang, M., ... & Sharfuddin, N. (2025). Closing the gap on healthcare quality for equity-deserving groups: a scoping review of equity-focused quality improvement interventions in medicine. *BMJ Quality & Safety*, 34(2), 120-129.
- 11. Ekundayo, F., & Nyavor, H. (2024). AI-driven predictive analytics in cardiovascular diseases: Integrating big data and machine learning for early diagnosis and risk prediction. *International Journal of Research Publication and Reviews*, *5*(12), 1240-1256.
- 12. Funes Hernandez, M., Babakhanian, M., Chen, T. P., Sarraju, A., Seninger, C., Ravi, V., ... & Wang, P. J. (2024). Design and Implementation of an Electronic Health Record-Integrated Hypertension Management Application. *Journal of the American Heart Association*, 13(2), e030884.
- 13. Mastrodicasa, D., van Assen, M., Huisman, M., Leiner, T., Williamson, E. E., Nicol, E. D., ... & Hanneman, K. (2025). Use of AI in cardiac CT and MRI: a scientific statement from the ESCR, EuSoMII, NASCI, SCCT, SCMR, SIIM, and RSNA. *Radiology*, *314*(1), e240516.
- 14. Liu, J., Wang, W., Ma, Z., Huang, G., SU, Y., Chang, K. J., ... & Lyu, M. (2024). Medchain: Bridging the gap between llm agents and clinical practice through interactive sequential benchmarking. *arXiv* preprint arXiv:2412.01605.
- 15. Dorraki, M., Liao, Z., Abbott, D., Psaltis, P. J., Baker, E., Bidargaddi, N., ... & Verjans, J. W. (2024). Improving cardiovascular disease prediction with machine learning using mental health data: a prospective UK Biobank study. *JACC: Advances*, 3(9_Part_2), 101180.
- 16. Lin, M., Guo, J., Gu, Z., Tang, W., Tao, H., You, S., ... & Jia, P. (2025). Machine learning and multi-omics integration: advancing cardiovascular translational research and clinical practice. *Journal of Translational Medicine*, 23(1), 388.
- 17. Padoan, A., Cadamuro, J., Frans, G., Cabitza, F., Tolios, A., De Bruyne, S., ... & Carobene, A. (2025). Data flow in clinical laboratories: could metadata and peridata bridge the gap to new AI-based applications? An investigation on behalf of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group on Artificial Intelligence (WG-AI). *Clinical Chemistry and Laboratory Medicine* (CCLM), 63(4), 684-691.
- 18. Wagner, M. K., Christensen, J., Christensen, K. A., Dichman, C., Gottlieb, R., Kolster, I., ... & Winkel, B. G. (2024). A multidisciplinary guideline-based approach to improving the sudden cardiac arrest care pathway: The Copenhagen framework. *Resuscitation plus*, 17, 100546.

