Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/13-10-4793-4799/

Submission 16 July 2025 Acceptance 22 Aug 2025 Publication 10 October 2025

Comprehensive Management of Glaucoma: Current Strategies, Advancements, and Clinical Perspectives

¹Dr Rehan Moinuddin Shaikh, ²Ahmed Haroon, ³Danish Marwat, ⁴Asad Jahangir, ⁵Adnan Jahangir, ⁶Tahmoor Ghori

¹Sharif Medical College, Lahore

²UHS, Lahore

³Service Hospital, Lahore

⁴PIMS, Islamabad

⁵Sir Gangaram Hospital, Lahore

⁶Mayo Hospital, Lahore

Abstract

Background: Glaucoma is chronic, progressive optic neuropathy with structural damage to the optic nerve and associated visual field defects. It remains one of the most prevalent causes of irreversible blindness worldwide

Objective: The current glaucoma management strategies are discussed in this article through evidence-based treatment and patient-driven care, i.e., pharmacological therapy, laser treatment, and surgery.

Methods: Literature and current clinical guidelines were critically appraised and synthesized in a comparative manner to assess the efficacy, safety, and practicality of the different management strategies.

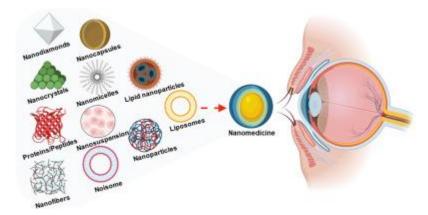
Results: Pharmacotherapy is the cornerstone of glaucoma treatment, with prostaglandin analogues being the first-line drugs. Laser trabeculoplasty and MIGS are alternatives for medical therapy poorly controlled or intolerable medical therapy.

Conclusion: Early diagnosis, continuous monitoring, tailored treatment plans, and a multidisciplinary regimen of medical, laser, and surgical treatments are the secrets of preserving vision and quality of life in glaucoma patients.

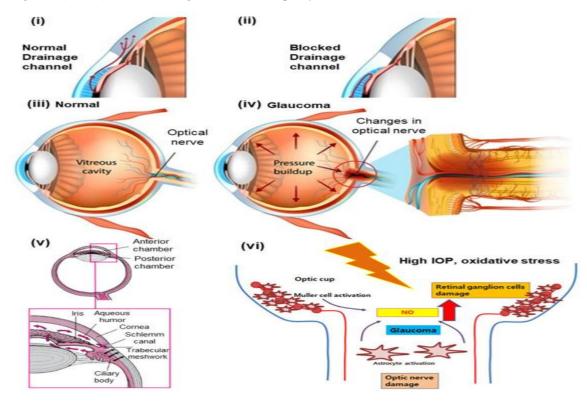
Keywords: Glaucoma, Intraocular Pressure, Prostaglandin Analogs, Laser Trabeculoplasty, Minimally Invasive Glaucoma Surgery, Optic Neuropathy, Disease Management

Introduction

Glaucoma is a series of silent optic neuropathies with structural loss of the optic nerve head and corresponding visual field defects [1]. It is estimated to affect over 80 million people globally, and approximately 11 million are afflicted with bilateral blindness [2]. The illness progresses unnoticed, appropriately referred to as "the sneak thief of sight," with patients typically asymptomatic late in the disease process [3]. Increased intraocular pressure (IOP) is the strongest modifiable risk factor, although glaucomatous damage can take place despite normal IOP, illustrating the multifactorial nature of the disease [4]. The two most frequently occurring ones are primary open-angle glaucoma (POAG) and angle-closure glaucoma (ACG). POAG is responsible for the large majority and has a chronic, insidious course.



Journal link: https://health-affairs.com/


Abstract Link: https://health-affairs.com/13-10-4793-4799/

Submission 16 July 2025 Acceptance 22 Aug 2025 Publication 10 October 2025

ACG is more commonly presenting acutely and with anterior chamber angle anatomy anomalies [5]. Secondary glaucoma's due to trauma, inflammation, or other ocular pathology contribute to disease burden. Effective glaucoma management is aimed at lowering IOP in an attempt to prevent or delay the development of disease [6]. Traditional medical therapy, that centers on topical drugs, has been the principal treatment for decades. Pharmacological evolution has introduced more efficient and less harmful drugs [7]. Laser therapies, such as selective laser trabeculoplasty (SLT), are increasingly being utilized as primary and adjuvant therapy. Surgeries have also evolved, from being openly invasive filtering operations such as trabeculectomy to more unobtrusive methods such as minimally invasive glaucoma surgeries (MIGS), which damage less but are equally effective [8].

Health Affairs ISSN - 0278-2715 Volume 13 ISSUE 10 page 4793-4799 Journal link: https://health-affairs.com/
Abstract Link: https://health-affairs.com/13-10-4793-4799/
Submission 16 July 2025

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/13-10-4793-4799/

Submission 16 July 2025 Acceptance 22 Aug 2025 Publication 10 October 2025

In addition to IOP reduction, control in its entirety involves close monitoring with optic nerve imaging, visual field, and individualized treatment regimens [9]. Patient compliance, education, and prompt detection are still the most important aspects of effective control of glaucoma [10]. Contemporary evidence-based practice concepts of the management of glaucoma are presented in this article with special emphasis on pharmacologic, laser, and surgical modalities in optimizing outcomes.

Methodology

A comprehensive PubMed, Scopus, and Cochrane Library databases search for the period 2010-2025 was conducted. Keywords used included "glaucoma management," "intraocular pressure," "prostaglandin analogs," "laser trabeculoplasty," and "MIGS." Clinical practice guidelines of the American Academy of Ophthalmology (AAO) and European Glaucoma Society (EGS) were also taken into consideration. Clinical trials of adult patients with primary open-angle or angle-closure glaucoma were considered. Randomized controlled trials, meta-analyses, systematic studys, and large cohorts were the priority for inclusion. The information was synthesized to facilitate comparison of efficacy, safety, and indications for medical, laser, and surgical procedures. Priority was assigned to those that have shown significant reductions in disease progression and loss of vision. Results were tabulated and summarized in narrative form to highlight key results and trends in current management practice.

Results

Table 1. Pharmacologic Therapies in the Management of Glaucoma

Drug Class	Mechanism of Action	Reduction	Common Side Effects	Clinical Role
Prostaglandin analogs	Increase veoscleral outflow		Hyperemia, eyelash growth	First-line therapy
Beta-blockers	Decrease aqueous humor production		Bradycardia, bronchospasm	Adjunct or alternative
Alpha-agonists	Decrease production, increase outflow	20–25	Dry mouth, fatigue	Add-on therapy
	production	115-20	Paresthesia, GI upset	Add-on or second- line therapy
Rho kinase inhibitors	Increase trabecular outflow	117-70	Conjunctival hyperemia	Adjunct, newer option

Table 2. Laser and Surgical Interventions for Glaucoma

Intervention	Indication	Efficacy (IOP Reduction %)	Advantages	Limitations / Complications
		Reduction %)		Complications

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/13-10-4793-4799/

Submission 16 July 2025 Acceptance 22 Aug 2025 Publication 10 October 2025

Intervention	Indication	Efficacy (IOP Reduction %)	Advantages	Limitations / Complications
Selective Laser Trabeculoplasty (SLT)	POAG, first or second-line	11 / U _ 3 U		May require retreatment
Trabeculectomy	Progressive or uncontrolled glaucoma	30–50		Risk of hypotony and infection
Tube shunt surgery	Non-responsive glaucoma		Helpful in difficult cases	Increased risk of complications
MIGS (e.g., iStent, Hydrus)	Mild to moderate glaucoma with cataract	11 / U 3 U		Variable long-term results

Pharmacologic therapy remains the cornerstone in glaucoma management, with prostaglandin analogs being the preferred first-line agents due to their potent intraocular pressure (IOP) reduction of up to 33% and convenient once-daily dosing. Beta-blockers and alpha-agonists provide moderate IOP control and are frequently used as adjunctive agents when monotherapy is inadequate. Carbonic anhydrase inhibitors and newer Rho kinase inhibitors serve as valuable alternatives for patients who experience intolerance or insufficient response to first-line medications. When medical therapy fails or disease progression continues, laser and surgical options offer significant IOP reduction. Selective Laser Trabeculoplasty (SLT) provides a safe, repeatable, and non-invasive option suitable for primary open-angle glaucoma (POAG). Trabeculectomy and tube shunt surgeries remain highly effective for advanced or refractory cases, achieving up to 50% IOP reduction but with higher complication risks. Minimally invasive glaucoma surgeries (MIGS) represent an evolving field, offering moderate efficacy with reduced morbidity and faster recovery, particularly beneficial in patients with coexisting cataracts.

Discussion

Glaucoma treatment has seen radical change during the recent decades, moving in the direction of patient-specific and customized therapy [11]. Pharmacological therapy is still the primary therapy, and prostaglandin analogs continue to be the most effective in lowering IOP with the convenience of once-daily dosing [12]. Beta-blockers and carbonic anhydrase inhibitors continue to be adjunctive drugs, particularly for patients with contraindications or not responding to initial treatment. Adding rho kinase inhibitors offers more options, particularly for patients requiring adjunct treatment [13]. Laser trabeculoplasty, particularly SLT, is being used increasingly also as initial and adjunct treatment. SLT has been reported in recent studies to be as effective as topical treatment in the majority of patients with added benefits of higher compliance and no systemic side effects [14]. The trend is towards more emphasis on drug-free therapy to improve patient outcome and quality of life. Surgeries remain in place for more complicated or resistant cases [15]. Although trabeculectomy and tube shunt surgery are helpful, they do not come without higher risks of complications. MIGS procedures have changed the surgical landscape by bringing less invasive procedures with favorable safety profiles, particularly for patients with mild to moderate disease [16]. Although their long-term efficacy is still in research, MIGS procedures are being incorporated into cataract surgery procedures. Optimal management of glaucoma

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/13-10-4793-4799/

Submission 16 July 2025 Acceptance 22 Aug 2025 Publication 10 October 2025

requires more than the lowering of IOP [17]. Careful monitoring, optic disc photography, visual fields, and risk stratification are necessary for earlier adjustment of the therapy. Patient compliance and patient education remain the best predictors of success [18]. Personalized medicine approaches, neuroprotection, and use of artificial intelligence for prediction of progression and early detection are the directions for the future.

Conclusion

Glaucoma remains a major cause of irreversible blindness worldwide, but with early diagnosis and evidence-based treatment, it prevents blindness in most patients. Treatment today hence employs a combination of medication, laser, and surgery based on the severity and individual needs. Prostaglandin analogues remain first-line medications, and SLT is an appropriate substitute or adjunct therapy. Conventional operations and MIGS are needed in late or poorly controlled disease cases. Patient-specific care plans, research, and patient education are useful to ensure the greatest outcome with preserved vision during the lifetimes of patients.

References

- 1. Dhawale, K. K., & Tidake, P. (2024). A comprehensive study of recent advances in minimally invasive glaucoma surgery: current trends and future directions. *Cureus*, *16*(7), e65236.
- 2. Sarkis, S., Chamard, C., Johansen, B., Daien, V., & Michon, F. (2025). Challenging glaucoma with emerging therapies: an overview of advancements against the silent thief of sight. *Frontiers in medicine*, *12*, 1527319.
- 3. Patton, G. N., & Lee, H. J. (2024). Chemical insights into topical agents in intraocular pressure management: from glaucoma etiopathology to therapeutic approaches. *Pharmaceutics*, *16*(2), 274
- 4. Zhang, J., Tian, B., Tian, M., Si, X., Li, J., & Fan, T. (2025). A scoping study of advancements in machine learning for glaucoma: current trends and future direction. *Frontiers in Medicine*, *12*, 1573329.
- 5. Micheletti, J. M., Shultz, M., Singh, I. P., & Samuelson, T. W. (2025). An Emerging Multi-mechanism and Multi-modal Approach in Interventional Glaucoma Therapy. *Ophthalmology and Therapy*, *14*(1), 13-22.
- 6. Tonti, E., Dell'Omo, R., Filippelli, M., Spadea, L., Salati, C., Gagliano, C., ... & Zeppieri, M. (2024). Exploring epigenetic modifications as potential biomarkers and therapeutic targets in glaucoma. *International Journal of Molecular Sciences*, *25*(5), 2822.
- 7. Khatoon, N., Firdous, A., Hirwani, M., Roy, A., Raza, M. A., & Ajazuddin. (2025). Targeted biologic therapies and advanced drug delivery approaches in asthma management: a clinical perspective. *Inflammopharmacology*, 1-25.
- 8. Desai, N., Rana, D., Patel, M., Bajwa, N., Prasad, R., & Vora, L. K. (2025). Nanoparticle Therapeutics in Clinical Perspective: Classification, Marketed Products, and Regulatory Landscape. *Small*, 2502315.
- 9. Chatterjee, S., Bhattacharya, M., Saxena, S., Lee, S. S., & Chakraborty, C. (2024). Autoantibodies in COVID-19 and Other Viral Diseases: Molecular, Cellular, and Clinical Perspectives. *Studys in Medical Virology*, *34*(5), e2583.
- 10. Dobhal, V., Kumar, A., Garg, I., Kumar, A., & Goel, F. (2025). Strabismus and nystagmus in oculocutaneous albinism: clinical perspectives, diagnosis, and role of neurotransmitters. *Neurogenetics*, *26*(1), 50.
- 11. Djulbegovic, M. B., Bair, H., Gonzalez, D. J. T., Ishikawa, H., Wollstein, G., & Schuman, J. S. (2025). Artificial intelligence for optical coherence tomography in glaucoma. *Translational Vision*

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/13-10-4793-4799/

Submission 16 July 2025 Acceptance 22 Aug 2025 Publication 10 October 2025

Science & Technology, 14(1), 27-27.

- 12. Wu, D., Liu, Y., Zhang, X., Zhang, R., Wang, S., Lu, H., & Yue, T. (2025). Efficacy and safety of stem cells in the treatment of glaucoma: systematic study and meta-analysis based on animal experiments. *Frontiers in Pharmacology*, *16*, 1587440.
- 13. Borgohain, R., & Patel, P. N. (2025). Polymeric Membranes in Contact Lens Technology for Glaucoma Treatment: Breakthroughs, Obstacles, and Emerging Opportunities. *Polymers for Advanced Technologies*, *36*(3), e70135.
- 14. Rykowska, I., Nowak, I., Nowak, R., & Michałkiewicz, O. (2025). Biodegradable Contact Lenses for Targeted Ocular Drug Delivery: Recent Advances, Clinical Applications, and Translational Perspectives. *Molecules*, *30*(12), 2542.
- 15. Zedan, M. J., Abdani, S. R., Badawi, S., Al-Bashayreh, M., & Zulkifley, M. A. (2025). Dual-stage deep-learning method for glaucoma severity classification based on multiscale feature fusion. *Experimental Eye Research*, 259, 110567.
- 16. Pardeshi, S. R., Gholap, A. D., Hatvate, N. T., Gharat, K. D., Naik, J. B., & Omri, A. (2024). Advances in dorzolamide hydrochloride delivery: harnessing nanotechnology for enhanced ocular drug delivery in glaucoma management. *Discover Nano*, *19*(1), 199.
- 17. Jan, C., He, M., Vingrys, A., Zhu, Z., & Stafford, R. S. (2024). Diagnosing glaucoma in primary eye care and the role of Artificial Intelligence applications for reducing the prevalence of undetected glaucoma in Australia. *Eye*, *38*(11), 2003-2013.
- 18. Bansal, A., Kubíček, J., Penhaker, M., & Augustynek, M. (2025). A comprehensive study of optic disc segmentation methods in adult and pediatric retinal images: from conventional methods to artificial intelligence (CR-ODSeg-AP-CM2AI). *Artificial Intelligence Study*, *58*(4), 121.

