

Metabolic Pathways: Regulation and Dysregulation in Disease

¹Mansoor Musa, ²Dr. Fauzia Jan, ³Babar Shahzad, ⁴Umar Tipu, ⁵Qamar Abbas, ⁶Isma Abbas

¹UHS, Lahore ²UMDC, Faisalabad ³PIMS, Islamabad ⁴Service Hospital, Lahore ⁵Sir Gangaram Hospital ⁶Mayo Hospital, Lahore

Abstract

Background: Metabolic pathways are highly regulated biochemical pathways that manage cellular energy, growth, and homeostasis. There are many molecular mechanisms of pathway regulation, and pathway dysregulation is associated with an incredibly rich variety of human disease, including diabetes, cancer, and metabolic syndromes.

Objectives: The purpose of the paper is to illustrate basal regulation mechanisms of metabolic processes, to explain the most significant changes that are related to pathological processes, and to highlight clinical relevance of such dysregulation.

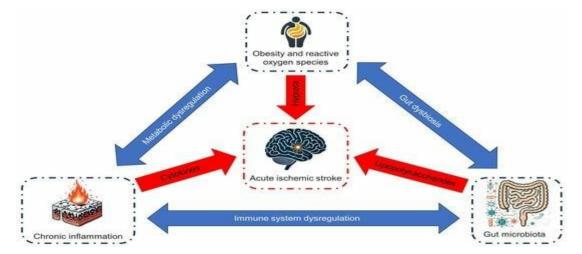
Methods: Adequate literature review was performed on the basis of peer-reviewed literature reports published between the years 2000–2025 that explained regulation mechanisms and disease associations for involved metabolic pathways such as glycolysis, gluconeogenesis, TCA cycle, and lipid metabolism. Metabolic pathway dysregulation produces gross alteration in cell energy homeostasis and biosynthesis. Dysregulation of aberrant enzyme expression, endocrine abnormality, and gene mutation were major controllers of nascent metabolic diseases.

Conclusions: Molecular understanding of metabolic pathway regulation and dysregulation is master key to designing a new generation of drugs that will alter metabolic disease, cancer, and other chronic diseases.

Keywords: Metabolic pathways, regulation, dysregulation, disease, glycolysis, TCA cycle, lipid metabolism, metabolic syndrome, cancer metabolism, therapeutic targets.

Introduction

Metabolic pathways are complex series of biochemical reactions that are accountable for energizing life by allowing cells to capture energy, synthesize macromolecules, and attain homeostasis [1]. Pathways are a series of enzyme-catalyzed reactions such as glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and lipid metabolism [2]. Regulation of pathways allows the metabolic activity to be tightly regulated in an attempt to meet the dynamic energy and biosynthetic demands of cells and tissues [3]. Regulation is stimulated through multiple diverse processes involving allosteric modification of enzymes, hormone action, covalent modification, substrate availability, and gene expression [4].

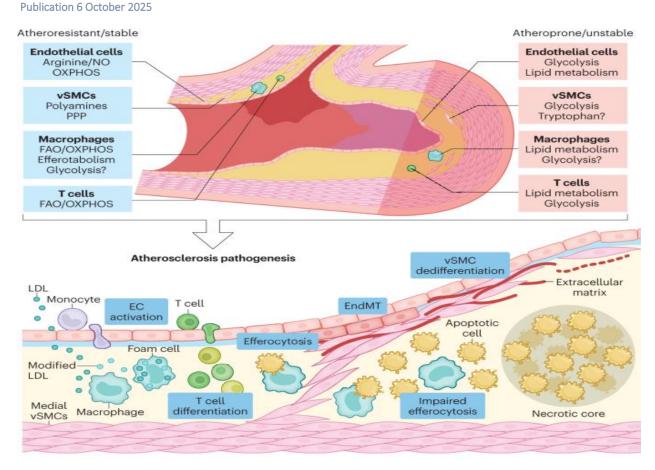


Health Affairs ISSN - 0278-2715 Volume 13 ISSUE 10 page 4674-4680 Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/13-10-4674-4680/

Submission 16 July 2025 Acceptance 21 Aug 2025 **Publication 6 October 2025**

In a normal scenario, regulatory pathways coordinate synergistically. For example, glucagon and insulin control glucose metabolism inversely to keep blood glucose within an incredibly small range [5]. Allosteric control of regulatory enzymes phosphofructokinase-1 and pyruvate kinase enables cells to control glycolytic flux in response to energy needs. [6] Lipid metabolism is controlled by transcription factors like sterol regulatory element-binding proteins (SREBPs) and peroxisome proliferator-activated receptors (PPARs) controlling lipid synthesis and oxidized gene expression [7]. These dysregulate events are, however, capable of provoking metabolic dysregulation, a shared denominator for the majority of disease. Imperfect insulin signal gives rise to imperfect glucose uptake and overproduction of gluconeogenesis, resulting in diabetes mellitus hyperglycemia [8]. Adaptation in metabolism of cancer sustains abnormally elevated cell growth by enhanced glycolysis (Warburg effect), non-specific activity of TCA cycle, and enhanced macromolecular biosynthesis [9].


Health Affairs ISSN - 0278-2715 Volume 13 ISSUE 10 page 4674-4680

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/13-10-4674-4680/

Submission 16 July 2025 Acceptance 21 Aug 2025

Dyslipidemia, insulin resistance, and low-grade chronic inflammation conducive to susceptibility to the metabolic derangement state are associated with obesity and metabolic syndrome [10]. Metabolic regulation is also better understood with advances in systems and molecular biology. Omics technologies such as genomics, transcriptomic, proteomics, and metabolomics have demonstrated intricate interactions of signal transduction networks and metabolic pathways [11]. Besides explaining disease pathogenesis, the analysis has provided the foundation for new therapeutic modulations in metabolic regulators, transporters, and enzymes [12]. Of prime significance are the regulation of primary metabolic pathways, dysregulation mechanisms in disease, and therapeutic window.

Methodology

Publication 6 October 2025

Literature systematic review was done through databases such as PubMed, Scopus, and Web of Science to find peer-reviewed articles from 2000 to 2025. The following keywords were utilized: "metabolic pathway regulation," "metabolic dysregulation," "glycolysis," "TCA cycle," "lipid metabolism," "disease," and "therapeutic targets." Relevance screening was performed by title and abstract followed by full text screening. Inclusion were researching that addressed molecular mechanisms of regulation of metabolism, derangement during disease, and clinical relevance. Both experimental researches and clinical researches were included. Exclusion were publications in languages other than English, peer-reviewed unsourced conference abstracts, and lack of mechanistic content studies. Systematic data extraction was used to determine regulatory mechanisms, dysregulated pathways, rate-limiting enzymes,

genetic mutations, and corresponding diseases. Results were categorized under thematic themes to synthesize, which are hormonal control, enzyme modulation, reprogramming of cancer metabolism, and metabolic syndrome dyslipidemia. Diagrammatic tables were sketched out to depict regulation key enzymes and enzyme modulation in disease states. This provided an overall and elaborate synthesis of information on regulation of metabolic pathways and how they contribute to the development of diseases.

Results

Dysregulation of metabolic pathways was fundamentally associated with pathogenesis and disease progression. Glucose and lipid metabolism dysregulation occurred in diabetes, whereas in cancer, dedifferentiated TCA cycle regulation and enhanced glycolysis supplied unbridled cell growth. Key transcription factors and enzymes were found to be central in the maintenance of metabolic homeostasis or pathogenesis.

Table 1. Key Regulatory Enzymes in Key Metabolic Pathways

Pathway	Enzyme (Key Regulator)	Regulatory Mechanism	Physiological Role
III TIVCOIVSIS		Allosteric inhibition by ATP, activation by AMP	Governs glycolytic flux to match energy requirements
Gluconeogenesis	Fructose-1,6- bisphosphatase		Prevents futile cycling with glycolysis
	Isocitrate dehydrogenase		Governs carbon flux through the TCA cycle
Lipid Metabolism	Acetyl-CoA carboxylase	Phosphorylation by AMPK	Regulates fatty acid synthesis

Table 2. Examples of Metabolic Dysregulation in Disease

Disease	Dysregulated Pathway	Key Molecular Alterations	Clinical Manifestation
Type 2 Diabetes			Hyperglycemia, dyslipidemia
Cancer	Glycolysis, TCA cycle	Warburg effect, differential enzyme expression	Increased proliferation, survival
Metabolic Syndrome	III inid metaholism	Higher SREBPs, lower PPAR activity	Dyslipidemia and insulin resistance
Mitochondrial Disorders			Fatigue, myopathy, neurodegeneration

Discussion

Metabolic reaction regulation is necessary for cellular and organism homeostasis [13]. Transcriptional regulation of metabolic flux, allosteric enzyme control, and hormonal signaling are implicated. Glucagon initiates fasting-evoked glucose genesis by the liver and insulin signaling certifies glucose uptake and storage [14]. Allosteric regulation allows for rapid adaptation on the enzyme level, e.g., in the PFK-1 in glycolysis, while transcriptional regulation controls long-term metabolic capacity [15]. Arbitrariness of all these processes is the pathogenesis of a vast array of disease. Breaking of balance between glucose utilization and production through insulin resistance is the pathogenesis of chronic hyperglycemia in diabetes [16]. Misbalance of metabolism is the etiology of such illnesses as cardiovascular disease, neuropathy, and nephropathy. There is cancer adaptation during the process of metabolic remodeling that enhances aerobic glycolysis (Warburg effect) in that tumor cells are highly energetic and biosynthetic precursors in the oxygenation context [17]. It is initiated by oncogenic signaling pathways such as PI3K/Akt/mTOR and Myc, which control metabolic transporters and enzymes. Pathological lipid metabolism is the basis of obesity and the metabolic syndrome. Caloric excess, defect in β -oxidation, and enhanced lipogenesis result in ectopic lipid deposition, inflammation, and insulin resistance. SREBPs and PPARs, the transcription regulators, are also modulated to form lipid storage and metabolic rigidity [18]. Likewise, mitochondrial disease is the pathologic substrate for neuromuscular diseases, aging, and metabolic syndromes by inducing perturbation of oxidative phosphorylation. Therapeutic remodeling of metabolism was hip a decade ago. Metformin, for instance, increases insulin sensitivity and suppresses hepatic gluconeogenesis by activating AMPK. Metabolic checkpoint inhibitors and glycolytic enzyme inhibitors will be cancer drugs. Life therapy—diet and exercise—are, nonetheless, spearheading metabolic homeostasis rehabilitation of metabolic syndrome and diabetes [19]. Together, the complex network of metabolic control is challenge and opportunity for therapy. Systems information must be acquired in order to create therapies that will reestablish homeostasis without interfering with normal physiology.

Conclusion

Metabolic pathways are delicately regulated systems that maintain life. Their deregulation is the basis of the pathogenesis of such multifactorial diseases as diabetes, cancer, and metabolic syndrome. Molecular and systems biology have defined such complexity of regulatory systems as well as their derangement in disease. Clarification of such pathways provides the potential for the targeted therapy to be brought to bear on such underlying derangements of metabolism. Convergence of metabolism and the clinic has humongous future promise for maximizing prevention, diagnosis, and treatment of disease.

References

- 1. Hu, T., Liu, C. H., Lei, M., Zeng, Q., Li, L., Tang, H., & Zhang, N. (2024). Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. *Signal Transduction and Targeted Therapy*, *9*(1), 268.
- 2. Yan, H., He, L., Lv, D., Yang, J., & Yuan, Z. (2024). The role of the dysregulated JNK signaling pathway in the pathogenesis of human diseases and its potential therapeutic strategies: a comprehensive review. *Biomolecules*, 14(2), 243.
- 3. Sic, A., Cvetkovic, K., Manchanda, E., & Knezevic, N. N. (2024). Neurobiological implications of chronic stress and metabolic dysregulation in inflammatory bowel diseases. *Diseases*, *12*(9), 220
- 4. Miao, H., Zhang, S. J., Wu, X., Li, P., & Zhao, Y. Y. (2025). Tryptophan metabolism as a target

Journal link: https://health-affairs.com/

Abstract Link: https://health-affairs.com/13-10-4674-4680/

Submission 16 July 2025 Acceptance 21 Aug 2025 Publication 6 October 2025

- in gut microbiota, ageing and kidney disease. *International Journal of Biological Sciences*, 21(10), 4374.
- 5. Lee, Y., Lee, S. H., Moon, E., Park, H., Jo, J., Hwang, J. H., & Choi, D. E. (2025). Compartment-specific adaptive responses and dysregulation under NQO1 deficiency in diabetic kidney disease: A transcriptomic GSEA-based investigation. *PLoS One*, 20(9), e0331582.
- 6. Stroope, C., Nettersheim, F. S., Coon, B., Finney, A. C., Schwartz, M. A., Ley, K., ... & Yurdagul Jr, A. (2024). Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. *Nature metabolism*, 6(4), 617-638.
- 7. de Lima, E. P., Moretti Jr, R. C., Torres Pomini, K., Laurindo, L. F., Sloan, K. P., Sloan, L. A., ... & Barbalho, S. M. (2024). Glycolipid metabolic disorders, metainflammation, oxidative stress, and cardiovascular diseases: unraveling pathways. *Biology*, *13*(7), 519.
- 8. Yan, X., Shi, L., Zhu, X., Zhao, Y., Luo, J., Li, Q., ... & Zhao, J. (2025). From Microbial Homeostasis to Systemic Pathogenesis: A Narrative Review on Gut Flora's Role in Neuropsychiatric, Metabolic, and Cancer Disorders. *Journal of Inflammation Research*, 8851-8873.
- 9. Jin, P., Duan, X., Huang, Z., Dong, Y., Zhu, J., Guo, H., ... & Xie, K. (2025). Nuclear receptors in health and disease: signaling pathways, biological functions and pharmaceutical interventions. *Signal transduction and targeted therapy*, 10(1), 228.
- 10. Weerawatanakorn, M., Kamchonemenukool, S., Koh, Y. C., & Pan, M. H. (2024). Exploring phytochemical mechanisms in the prevention of cholesterol dysregulation: a review. *Journal of Agricultural and Food Chemistry*, 72(13), 6833-6849.
- 11. Khan, A., Alzahrani, H. A., Elmagzoub, R. M., Abd Elaleem, K. G., Mohamed, A. S., Elsharief, A. A., ... & Ur Rehman, Z. (2025). Decoding Immune and Metabolic Dysregulation in COPD and Tuberculosis: Insights from Systems Biology and Transcriptomics. *Journal of Pure & Applied Microbiology*, 19(3).
- 12. Zou, Z., Hu, W., Kang, F., Xu, Z., Li, Y., Zhang, J., ... & Dong, S. (2025). Interplay between lipid dysregulation and ferroptosis in chondrocytes and the targeted therapy effect of metformin on osteoarthritis. *Journal of advanced research*, 69, 515-529.
- 13. Jiao, Y., Liu, X., Shi, J., An, J., Yu, T., Zou, G., ... & Zhuo, L. (2024). Unraveling the interplay of ferroptosis and immune dysregulation in diabetic kidney disease: a comprehensive molecular analysis. *Diabetology & metabolic syndrome*, 16(1), 86.
- 14. Kakazu, E., Mino, M., & Kanto, T. (2025). Role of amino acids in the regulation of hepatic gluconeogenesis and lipogenesis in metabolic dysfunction-associated steatotic liver disease. *Clinical and Molecular Hepatology*, 31(3), 771.
- 15. Bishop, E. L., Gudgeon, N., Fulton-Ward, T., Stavrou, V., Roberts, J., Boufersaoui, A., ... & Dimeloe, S. (2024). TNF-α signals through ITK-Akt-mTOR to drive CD4+ T cell metabolic reprogramming, which is dysregulated in rheumatoid arthritis. *Science signaling*, *17*(833), eadg5678.
- 16. Yang, J., Liang, J., Hu, N., He, N., Liu, B., Liu, G., & Qin, Y. (2024). The gut microbiota modulates neuroinflammation in Alzheimer's disease: elucidating crucial factors and mechanistic underpinnings. *CNS neuroscience & therapeutics*, 30(10), e70091.
- 17. Dauwe, Y., Marie, L., Grimaldi, M., Balaguer, P., Lippi, Y., Gayrard, V., & Mselli-Lakhal, L. (2025). PXR-dependant dysregulation of glucose metabolism induced by chronic exposure to NOAEL-level pesticide cocktail in mice. *Environment International*, 109697.
- 18. Pathak, R., Sharma, S., Bhandari, M., Nogai, L., Mishra, R., Saxena, A., ... & Sharma, H. (2024). Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes,

Publication 6 October 2025

consequences and interventions. Journal of Experimental Zoology India, 27(2).

19. Roth-Walter, F., Adcock, I. M., Benito-Villalvilla, C., Bianchini, R., Bjermer, L., Caramori, G., ... & Stellato, C. (2024). Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. *Allergy*, 79(5), 1089-1122.

